
The list of Course Work topics are presented in my Google drive:

Asymmetric - Public Key Cryptography

Public Parameters PP = (p, g)
p - strong prime number of 2048 bit length: p ~ 22048;
We will use p ~ 228, i.e. of 28 bit length: p ~ 228.

g - generator in Zp* = {1, 2, 3, …, p-1}

PrK = x <-- randi ==> PuK = a = gx mod p
In general, PrK and PuK are related by function F:

PuK = F(PrK)
F is one-way function - OWF

Having PuK it is infeasible to find
PrK = F-1(PuK)

F(x)=a is OWF, if:
1.It easy to compute a, when F and x are given.
2.It is infeasible compute x when F and a are given.

Threaths of insecure PrK generation

Asymmetric Encryption - Decryption
c=Enc(PuKA, m)
m=Dec(PrKA, c)

Asymmetric Signing - Verification

Sign(PrKA, m) = ϭ = (r, s)

V=Ver(PuKA, m, ϭ), V{True, False}  {1, 0}

Message m < p

m
m < p

m
m < p

x
a b y

ab

E
D

{

111_009 ElGamal-Enc

 111_009 ElGamal-Enc Page 1

Asymmetric Encryption-Decryption: El-Gamal Encryption-Decryption

p=268435019; g=2;

Let message m~ needs to be encrypted, then it must be encoded in decimal number m: 1< m < p.
E.g. m = 111222. Then m mod p = m.

1.Public Parameters generation PP = (p, g).

Generate strong prime number p: >> p=genstrongprime(28) % strong prime of 28 bit length
Find a generator g in Zp*= {1, 2, 3, …, p-1} using condition.
Strong prime p=2q+1, where q is prime, then g is a generator of ZP* iff
gq ≠ 1 mod p and g2≠ 1 mod p.

Declare Public Parameters to the network PP = (p, g); p= 268435019; g=2;
 2^28-1= 268,435,455
>> 2^28-1
ans = 2.6844e+08
>> int64(2^28-1)
ans = 268435455

ElGamal Cryptosystem

 111_009 ElGamal-Enc Page 2

Necessity of probabilistic encryption.
Encrypting the same message with textbook RSA always yields the same ciphertext, and so we
actually obtain that any deterministic scheme must be insecure for multiple encryptions.
Tavern episode

D-x mod p computation using Fermat theorem:
If p is prime, then for any integer a holds ap-1 = 1 mod p.

 111_009 ElGamal-Enc Page 3

Tavern episode
Enigma

Authenticated Key Agreement Protocol using ElGamal Encryption and Signature.
Hybrid encryption for a large files combining asymmetric and symmetric encryption method.

Hybrid encryption. Let M be a large finite length file, e.g. of gigabytes length.
Then to encrypt this file using asymmetric encryption is extremely ineffective since we must split it into millions of
parts having 2048 bit length and encrypt every part separately.
The solution can be found by using asymmetric encryption together with symmetric encryption, say AES-128.
It is named as hybrid encryption method.
For this purpose the Key Agreement Protocol (KAP) using asymmetric encryption for the same symmetric secret
key k agreement must be realized and encryption of M realized by symmetric encryption method, say AES-128.

AKAP: Asym.Enc & Digital Sign.

 111_009 ElGamal-Enc Page 4

 111_009 ElGamal-Enc Page 5

How to provide anonymity of transaction amounts
and to verify the balance: m1+m2 = m3+m4 ?
n1= gm1 mod p n3= gm3 mod p
n2= gm2 mod p n4= gm4 mod p

If m1+m2 = m3+m4,
Then n1*n2 = n3*n4.

Till this place

 111_009 ElGamal-Enc Page 6

Homomorphic encryption: cloud computation with encrypted data.

Paillier encryption scheme is additively-multiplicative homomorphic and has a potentially nice
applications in blockchain, public procurement, auctions, gamblings and etc.
 Enc(Puk, m1+m2) = c1•c2.

 111_009 ElGamal-Enc Page 7

