The list of Course Work topics are presented in my Google drive:

1
$$
\text{mod } q \rightarrow 9 - 1
$$
 $\text{mod } 2\pi$ (1, 1, 2)
\n2) $\text{d} \text{mod } 2\pi$ (2) $\text{mod } 2\pi$ (3)
\n3) $\text{d} \text{mod } 2\pi$ (4) $\text{mod } 2\pi$ (5) $\text{mod } 2\pi$
\n6) $\text{d} \text{mod } p$ $\text{mod } p$ (1, 1, 1, 2)
\n $\text{d} \text{mod } p$ (1, 1, 1, 2)
\n $\text{d} \text{mod } p$ (2) $\text{d} \text{mod } p$ (3) $\text{d} \text{mod } p$
\n $\text{d} \text{mod } p$ (4) $\text{mod } p$ (5) $\text{mod } p$ (6) $\text{mod } p$ (7) $\text{mod } p$
\n $\text{d} \text{mod } p$ (8) $\text{mod } p$ (9) $\text{mod } p$ (10) $\text{mod } p$ (11) $\text{mod } p$ (12) $\text{mod } p$ (13) $\text{mod } p$ (15) $\text{mod } p$ (16) $\text{mod } p$ (17) $\text{mod } p$ (18) $\text{mod } p$ (19) $\text{mod } p$ (10) $\text{mod } p$ (10) $\text{mod } p$ (11) $\text{mod } p$ (11) $\text{mod } p$ (12) $\text{mod } p$ (13) $\text{mod } p$ (14) $\text{mod } p$ (15) $\text{mod } p$ (16) $\text{mod } p$ (17) $\text{mod } p$ (19) $\text{mod } p$ (19

Necessity of probabilistic encryption.

Encrypting the same message with textbook RSA always yields the same ciphertext, and so we actually obtain that any deterministic scheme must be insecure for multiple encryptions.

Tavern episode Enigma **Authenticated Key Agreement Protocol using ElGamal Encryption and Signature. Hybrid encryption for a large files combining asymmetric and symmetric encryption method. Hybrid encryption.** Let *M* be a large finite length file, e.g. of gigabytes length. Then to encrypt this file using asymmetric encryption is extremely ineffective since we must split it into millions of parts having 2048 bit length and encrypt every part separately. The solution can be found by using **asymmetric encryption** together with **symmetric encryption**, say AES-128. It is named as **hybrid encryption method**. For this purpose the **Key Agreement Protocol** (**KAP**) using **asymmetric encryption** for the same symmetric secret key *k* agreement must be realized and encryption of *M* realized by **symmetric encryption** method, say AES-128. **AKAP: Asym.Enc & Digital Sign.** How to encrypt large data file M: Hybrid enc-dec method. 1. Parties must agree on common symmetric secret key k. for symmetric block cipher, e.g. AES-128, 192, 256 bits. $B: PrK_B = 4$; $PuK_B = b$. $\mathcal{H}: P_{F}K_{A}=X; P u K_{A}=a$. $P u K_R = b$. $PuK_A=0$ 1) k c randi (2¹²⁸)
is randi (2¹²⁸) $\frac{1}{\alpha}$ $\mathcal{E}nc(\beta u k_{B} = b, i_{k}, k) = c = (E, D)$ \int_{Δ_2} Vorigy if R_4K and Cent_a are valid? L.2. Vougy if 6 on h = H (G) is valid? 2) M-large file to be encrypted $E_k(M) = AES_k(M) = G$ 3) signs ciphertext C 2. Dec($PrK_{B,C}$) = k $B.D_{k}(C)=AES_{k}(C)=M.$ 3.1) $h = H(G)$ 3.2) $Sign(R_1K_A = x, h) = G = (r, s)$ A was using so called encrypt-and-sign (E-&-S) paradigm. (E-&-s)paradigm is recomended to prevent so called Choosen Ciphertext Attacks - CCA: it is most strong attack But most complex in realization.

Homomorphic property of Eltramal encryption Let we have 2 messages m1, m2 to be encrypted M₂ - how many i_1 + randi (\mathcal{X}_p^*) i_2 + randi (\mathcal{L}_{p}^*) electrocars $E_1 = m_1 \cdot \varrho^{l_1}$ mod p $E_2 = m_2 \cdot \alpha^{l_2} \mod p$ Bob Would $D_1 = q^{l_1} \mod p$ $D_2 = g^{L_2} \mod p$ like to have $-c_2 = (\epsilon_2, D_2)$ $c_1 = (\epsilon_4, D_4)$ Let we intend to encrypt product m_1 . m_2 mod $p = m$ < p of corresponding plaintexts m1 and m₂ wring random param $i = (i_1 + i_2)$ mod (p-1). $Enc(a, (i_1 + i_2) mod (p-1), m_1 \cdot m_2 mod p) = c_{12} = (E_{12}, D_{12})$
 $E_{12} = m_1 \cdot m_2 \cdot a^{i_1 + i_2} mod (p-1)$
 $E_1 = E_1 E_2$ (mpp) P_2 (m₁ $\cdot a^{i_1} mod p \cdot m_2 \cdot a^{i_2} mod p$) and p $E_{12} = E_1 \cdot E_2$ mod p $D_{12}=g^{l_1+l_2}$ modp = $(g^{l_1}$ modp.g^{l2}modp) modp $D_{12} = D_4 \cdot D_2 \mod p$ \mathcal{D}_2 $Enc(\alpha, (i_1 + i_2) mod (p-1), m_1 \cdot m_2 mod p) = c_{12} =$ $=$ (E₁₂, D₁₂) = $=(\varepsilon_1\cdot\varepsilon_2 \bmod p$, $D_1\cdot D_2 \bmod p)=c_1\cdot c_2$ Multiplicative isomorphism Encryption funktion of production $m_1 \cdot m_2$ of two plaintexts m_1 and m_2 maps to ciphertext $c_1\cdot c_2=c$ of two ciphertexts c_1 and c_2 , when $e_1 = Enc(a, i_1, m_1)$ and $c_2 = Enc(a, i_2, m_2)$. $Enc(M_1 \cdot M_2) = Enc(M_1) \cdot Enc(M_2) = c_1 \cdot c_2$ Additively Multiplicative Isanorphism

 $Enc(m_1 + m_2) = e = e_1 \cdot c_2$ = lascal Paillier encryption. Application in evoting and Blockchain systems. One special case of Elcannal encryption is instead of m_1 , m_2 encryption is insieus of m_1 , m_2 encryption
to encrypt messages $n_1 = g^{m_3}$, $n_2 = g^{m_2}$; $n_3 = g^{m_3}$, $n_y = g^{m_y}$; How to provide anonymity of transaction amounts $\boldsymbol{\varepsilon}$ $\boxed{0.1}$ m1=2000 A $m3=1000$ and to verify the **balance**: **m1+m2 = m3+m4** ? $PrK_E = z$ $PrK_A=x$ $n3 = g^{m3} \text{ mod } p$ **n1**= **g m1** mod **p n3**= **g** $P u K_E=e$ $$2 \frac{\text{m2}=3000}{\text{m2}}$$ $PuK_A=a$ $n2 = g^{m2} \text{ mod } p$ **m2** mod **p n4**= **g m4** mod **p** $m4 = 4000$ **UTxO** If **m1+m2 = m3+m4**, Then **n1*n2 = n3*n4**. $C_1.C_2 = C_3.C_4$ Till this place $Enc(Q, i_1 + i_2, n_1 \cdot n_2) = Enc(Q, i_1, n_1) \cdot Enc(Q, i_2, n_2)$ $E_{12} = E_1 \cdot E_2$ mod $p = n_1 a^{i_1}$ mod $p \cdot n_2 a^{i_2}$ mod $p =$ = $g^{m_4}a^{i_1}$ mod p . $g^{m_2}a^{i_2}$ mod p = $=$ g^{m1+m2}. $a^{i_1+i_2}$ med p. Let $m_1 + m_2 = m_3 + m_4$ n_1 n_2 n_3 n_4 $\begin{array}{ccccc} & 2 & & 2 & & 2 & & 2 \ & 6 & & 6 & & 6 \ & 6 & & 6 & & 6 \ \end{array}$ \mathcal{C}_4

If $m_1 + m_2 = m_3 + m_4$ mod $(p-1) \implies c_1 \cdot c_2 = c_3 \cdot c_4$; **Homomorphic encryption: cloud computation with encrypted data. Paillier encryption scheme is additively-multiplicative homomorphic and has a potentially nice applications in blockchain, public procurement, auctions, gamblings and etc.** $Enc(Puk, m_1+m_2) = c_1 \cdot c_2$. Blockchain and IPFS opplication to data storage. IPFS, web3.